Flow Migrations in Software Defined Networks: Consistency, Feasibility, and Optimality

Yang Chen, Huanyang Zheng, and Jie Wu Center for Networked Computing Temple University, USA

1. Introduction

Flow migration in SDN

- Upon traffic changes
- Challenges:
- Asynchronous rule updates -> congestion -> deadlocks Basic update methods: $p_2 = f_2$
- Ordering migrate protocols
- Two-phase migrate protocols

Flow	Tag	Action		
f ₂	old	forward to v_4		
f ₂	new	forward to v_5		

Proposed Method

Ordering migrate protocols

- Pros: no additional overhead
- Cons: do not always exist
- Two-phase migrate protocols
 - Pros: simple and fast
 - Cons: overhead from packet tagging and extra rules, imperfect synchronization

In this paper we use spare paths for flow migration.

A Motivating Example

Ordering protocols do not always work

overlap between flows' initial and final paths

Unit flow capacity/flow demand Flows are un-splittable The initial path of f_1 overlaps the final path of f_2 , and vice versa

Example (Cont'd)

Spare path for flow f

- Enough bandwidth to hold f
- Same source and destination for f
- Does not overlap with initial or final paths of f
- Multiple spare paths exist

2. Model

Model

A network with capacitated links and a set of flows with demands

Objective

Migrate flows from given initial paths to final paths

Consistency

Migration constraint: no congestion or packet loss

Feasibility

Existence of consistent flow migration

Optimality

Use the fewest spare links

Concepts

- Resource Dependency Graph (RDG): RDGs are not unique
- Deadlock: A cycle exists in all RDGs
- Spare path collection: A set of spare paths resolve a deadlock

Unit flow demand. Link's capacity: e₁₄=e₄₅=2; others= 1

3. Feasibility and Optimality

Feasibility: Each deadlock has a spare path collection

Theorem: If multiple consistent flow migrations exist, it is NP- hard to find the optimal one which occupies the spare links.

Proof ideas:

- 1. Reduction from set cover problem
- 2. Deadlocks as elements: L= $\{d_1, d_2, ..., d_{|L|}\}$
- Spare path collections as sets: {S₁, S₂,...};
 S₁={d₁, d₂, d₄}, S₂={d₁, d₂}, S₃={d₃}

Intertwined Deadlocks: d1 and d2

Initial State

Final State

- A spare path collection resolves two deadlocks
 - Move f_1 to a spare path $\{e_{45}, e_{52}\}$
 - Move f_3 and then f_2
 - Move f_1 to its final state

Network Update through Spare Links (NUSL)

Iteratively choose the spare path collection with the max marginal benefit-to-cost ratio

- 1. Benefit: the number of broken deadlocks
- 2. Cost: the marginal gain of spare resources

until all deadlocks are resolved

Managing the complexity

- H: the maximum number of hops in a spare path
- C: the maximum number of flow replacements (by its spare path) in resolving a deadlock

(i.e., cardinality of a spare path collection)

Complexity Analysis

The algorithm achieves an approximation ratio of O(H·C·ln |L|)

Proof Ideas:

• Use the classic set cover approximation algorithm for reference

Worst case time complexity: $O(|L| \cdot \sum_{i=1}^{C} {|F| \choose i} \cdot (|F| \cdot |E|^{H})^{i})$

Proof Ideas

• Use a spare path collection of i paths: $\binom{|F|}{i} \cdot (|F| \cdot |E|^{H})^{i}$

4. Simulation

Two comparison algorithms:

- 1. One-shot: cuts off all the current flows and allows new ones in after the network is vacant (Baseline)
- 2. Dionysus: migrates flows in a topological order and opportunistically rate limits flows as zero to resolve deadlocks (SIGCOMM 14)
- Network topologies

WAN network

Fat-tree network

Settings and Measurements

Settings

1. WAN topology (link capacity: 1 Gbps)

Traffic load	0.2	0.4	0.6	0.8
Flow number	729	1538	2387	3120

2. Fat-tree topology (link capacity: 1 Gbps)

Traffic load	0.2	0.4	0.6	0.8
Flow number	2168	4532	6352	8423

Measurements

1. The number of rate-limiting flows

when a consistent migration plan does not exist

2. Update steps

time from the first migration until all flows are migrated

3. Traffic loss

the total number of lost packets

Simulation Results

- NUSL rate-limiting: 51% of One Shot, 78% of Dionysus on average (80% ratio)
- NUSLtakes about 19% (WAN) and 33% (fat-tree) more steps than Dionysus NUSL always has the least traffic loss

Simulation Results (cont'd)

Performance in the WAN topology

Performance in the fat-tree topology

- Heavier traffic load causes more deadlock
- Fat-tree topology is more likely to find a feasible solution

5. Conclusion

Migrate flows using spare paths

- Deadlock resolution
- Spare path feasibility determination
- NP-hardness
 - Deadlock resolution: using the fewest spare links

Approximation

Set cover: deadlocks are covered by spare path collections

Future works

1. Finer granularity: link-based migration solutions